What is Seismology? Seismic Waves Types

What is Seismology?

Seismology is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. The field also includes studies of earthquake environmental effects such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic, atmospheric, and artificial processes such as explosions. A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of earth motion as a function of time is called a seismogram. A seismologist is a scientist who does research in seismology.

Seismic waves are the waves of energy caused by the sudden breaking of rock within the earth or an explosion. They are the energy that travels through the earth and is recorded on seismographs.


Types of Seismic Waves

  1. Body waves: There are two types of body waves, pressure waves or primary waves (P-waves) and shear or secondary waves (S-waves). P-waves are longitudinal waves that involve compression and expansion in the direction that the wave is moving and are always the first waves to appear on a seismogram as they are the fastest moving waves through solids. S-waves are transverse waves that move perpendicular to the direction of propagation. S-waves are slower than P-waves. Therefore, they appear later than P-waves on a seismogram. Fluids cannot support perpendicular motion, so S-waves only travel in solids.
  2. Surface waves: Travelling only through the crust, surface waves are of a lower frequency than body waves, and are easily distinguished on a seismogram as a result. Though they arrive after body waves, it is surface waves that are almost enitrely responsible for the damage and destruction associated with earthquakes. This damage and the strength of the surface waves are reduced in deeper earthquakes. 
  3. Rayleigh Waves: The other kind of surface wave is the Rayleigh wave, named for John William Strutt, Lord Rayleigh, who mathematically predicted the existence of this kind of wave in 1885. A Rayleigh wave rolls along the ground just like a wave rolls across a lake or an ocean. Because it rolls, it moves the ground up and down, and side-to-side in the same direction that the wave is moving. Most of the shaking felt from an earthquake is due to the Rayleigh wave, which can be much larger than the other waves.