Sulfur: Chemical Element Properties

Sulfur is a chemical element, S is the symbol and atomic number 16. It is abundant, multivalent, and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula S8. Elemental sulfur is a bright yellow, crystalline solid at room temperature.

It is the 10th most common element by mass in the universe, and the 5th most common on Earth. Though sometimes found in pure, native form, It is on Earth usually occurs as sulfide and sulfate minerals. Being abundant in native form, sulfur was known in ancient times, being mentioned for its uses in ancient India, ancient Greece, China, and Egypt.


In the Bible, It is called brimstone, which means “burning stone”. Today, almost all elemental sulfur is produced as a byproduct of removing sulfur-containing contaminants from natural gas and petroleum. The greatest commercial use of the element is the production of sulfuric acid for sulfate and phosphate fertilizers, and other chemical processes. The element sulfur is used in matches, insecticides, and fungicides. Many sulfur compounds are odoriferous, and the smells of odorized natural gas, skunk scent, grapefruit, and garlic are due to organosulfur compounds. Hydrogen sulfide gives the characteristic odor to rotting eggs and other biological processes.

Physical properties of Sulfur

It forms several polyatomic molecules. The best-known allotrope is octasulfur, cyclo-S8. The point group of cyclo-S8 is D4d and its dipole moment is 0 D. Octasulfur is a soft, bright-yellow solid that is odorless, but impure samples have an odor similar to that of matches. It melts at 115.21 °C (239.38 °F), boils at 444.6 °C (832.3 °F) and sublimes easily. At 95.2 °C (203.4 °F), below its melting temperature, cyclooctasulfur changes from α-octasulfur to the β-polymorph. The structure of the S8 ring is virtually unchanged by this phase change, which affects the intermolecular interactions. Between its melting and boiling temperatures, octasulfur changes its allotrope again, turning from β-octasulfur to γ-sulfur, again accompanied by a lower density but increased viscosity due to the formation of polymers. At higher temperatures, the viscosity decreases as depolymerization occurs. Molten sulfur assumes a dark red color above 200 °C (392 °F). The density of sulfur is about 2 g/cm3, depending on the allotrope; all of the stable allotropes are excellent electrical insulators.

Chemical properties

  • It burns with a blue flame with formation of sulfur dioxide, which has a suffocating and irritating odor.
  • It is insoluble in water but soluble in carbon disulfide and, to a lesser extent, in other nonpolar organic solvents, such as benzene and toluene.
  • The fourth and sixth ionization energies are 4556 and 8495.8 kJ/mol, the magnitude of the figures caused by electron transfer between orbitals; these states are only stable with strong oxidants such as fluorine, oxygen, and chlorine.
  • It reacts with nearly all other elements with the exception of the noble gases, even with the notoriously unreactive metal iridium yielding iridium disulfide.Some of those reactions need elevated temperatures.