Fluorine: Chemical Element Characteristics

Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists as a highly toxic pale yellow diatomic gas at standard conditions. As the most electronegative element, it is extremely reactive, as it reacts with almost all other elements, except for helium and neon.

In 1771 the Swedish chemist Carl Wilhelm Scheele obtained hydrofluoric acid in an impure state by heating fluorspar with concentrated sulfuric acid in a glass retort, which was greatly corroded by the product; as a result, vessels made of metal were used in subsequent experiments with the substance. The nearly anhydrous acid was prepared in 1809, and two years later the French physicist André-Marie Ampère suggested that it was a compound of hydrogen with an unknown element, analogous to chlorine, for which he suggested the name fluorine. Fluorspar was then recognized to be calcium fluoride.

It was not until 1886 that the French chemist Henri Moissan prepared the element by electrolyzing a solution of potassium hydrogen fluoride in hydrogen fluoride. He received the 1906 Nobel Prize for Chemistry for isolating fluorine. The difficulty in handling the element and its toxic properties contributed to the slow progress in fluorine chemistry. Indeed, up to the time of World War II the element appeared to be a laboratory curiosity. Then, however, the use of uranium hexafluoride in the separation of uranium isotopes, along with the development of organic fluorine compounds of industrial importance, made fluorine an industrial chemical of considerable use.

It containing mineral fluorspar (fluorite, CaF2) has been used for centuries as a flux (cleansing agent) in various metallurgical processes. The name fluorspar is derived from the Latin fluere, “to flow.” The mineral subsequently proved to be a source of the element, which was accordingly named fluorine. The colourless, transparent crystals of fluorspar exhibit a bluish tinge when illuminated, and this property is accordingly known as fluorescence.


It is found in nature only in the form of its chemical compounds, except for trace amounts of the free element in fluorspar that has been subjected to radiation from radium. Not a rare element, it makes up about 0.065 percent of Earth’s crust. The principal fluorine-containing minerals are (1) fluorspar, deposits of which occur in Illinois, Kentucky, Derbyshire, southern Germany, the south of France, and Russia and the chief source of fluorine, (2) cryolite (Na3AlF6), chiefly from Greenland, (3) topaz (Al2SiO4[F,OH]2), the gemstone, and (4) lepidolite, a mica as well as a component of animal bones and teeth.